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Multiple representations, multiple modalities, and technology can be helpful in the understanding of 
mathematical concepts when used in an appropriate manner (Shah & Freedman, 2003; Goldman, 
2003), but this alone does not account for the student benefits of creating and using dynamic models 
over teacher generated graphs to construct connections between representations. By uncovering the 
dynamic nature of mathematics, calculus becomes more transparent as relationships and patterns 
emerge. The struggle to understand becomes worthwhile and rewarding for students as they create 
and observe the action of a dynamic mathematical object. This study shows an improvement in 
attitude, and academic achievement when students develop dynamic mathematical object to 
understand calculus and poses new questions to explore. 
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Introduction 
Mathematics students across all ages and subtopics are encouraged to explore multiple 

representations of mathematical relationships (e.g., graphical, symbolic, tabular) using a variety of 
appropriate tools (National Governors Association Center for Best Practices, Council of Chief State 
School Officers, 2010; National Council of Teachers of Mathematics [NCTM], 2000). The use of 
tools ranging from pencil, paper, and rulers to calculators, computer algebra systems, and dynamic 
geometry software are encouraged to aid in the solution and exploration of mathematical problems 
and concepts. Since the invention of the computer in the mid-twentieth century, computers have 
decreased considerably in size, increased tremendously in processing power, and have become 
inexpensive enough to permeate private and public sectors, including education. The increasing 
availability of technology in education has led to digital textbooks, advanced handheld calculators, 
and one-to-one technology initiatives. New technologies such as these lead to new questions and 
studies regarding the efficacy of technology in the classroom, and the results have varied greatly 
(Bebell & Kay, 2010; Donovan, Hartley, & Strudler, 2007; Maninger & Holden, 2009). The 
opportunity to explore the affordances of effective practices is expanding as the technologies evolve, 
and more studies must be done in order to identify these affordances to help maximize learning in a 
mathematics classroom. 

Although computers grant access to the Internet, powerful dynamic software, and the ability to 
collaborate in new ways, it is necessary that teachers thoroughly explore the multitude of options and 
determine what methods are effective and beneficial to teaching and learning. Studies of 
effectiveness should parallel the teachers' and students' explorations to confirm whether particular 
methods are beneficial, or possibly detrimental, to learning objectives and also strive to identify the 
particular affordances of the experience. This process will refine educators' understanding of the 
usefulness of technology and may help to evolve current methods of instruction by identifying the 
affordances of useful procedures. In this paper, these matters of efficacy and affordances will be 
explored by examining the use of software to create dynamic representations of functions, referred to 
as dynamic models, in a secondary calculus classroom. Specifically, this paper will address the 
question: does student creation of, and interaction with, dynamic models using Wolfram 
Mathematica increase performance on calculus assessments composed of a variety of subtopics (i.e., 
derivatives, tangent lines, relative extrema)? And, does this experience have an effect on student 
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attitudes toward mathematics? First, the Literature Review section will provide context for the 
various tools that were utilized during the experiment. Then, the Design and Methods section will 
describe the quasi-experimental design and provide details about the intervention that took place 
during the experiment. Finally, sections will explore certain affordances of the learning activity and 
make suggestions for further clarifying research. 

Literature Review 
Dynamic mathematic learning environments allow students and teachers to explore and uncover 

relationships by manipulating aspects of a particular concept. These dynamic learning environments 
can be applied in a variety of ways to a diverse assortment of topics. Students can use dynamic 
geometry software (e.g., Geometer's Sketchpad, GeoGebra) to construct geometric figures and 
explore properties of the figures by clicking and dragging components to investigate patterns, make 
conjectures, and verify relationships. Bu and Haciomeroglu (2010) explore the specific use of sliders 
(see figure 1) in dynamic learning environments. A slider acts as a single mathematical object that 
has two representations. Algebraically, a slider acts as a variable within a defined interval that can be 
conceptualized as a constant in certain settings. "Graphically, a slider appears as a segment which 
allows the user to adjust the value of the corresponding variable through dragging" (Bu & 
Haciomeroglu, 2010, p. 214). The presentation of both graphical and algebraic representations gives 
learners the ability to make abstractions more visible and the opportunity to make connections 
between representations (Martinovic & Karadag, 2012). When sliders are used to represent a constant 
or a constant variable that acts as a parameter of a function, learners can explore multiple cases of a 
function without having to change the function definition (Bu & Haciomeroglu, 2010). By 
comparison, graphing multiple of cases of a function using pencil and paper, or even a traditional 
graphing calculator (e.g., the TI-84+), would invariably take more time. Among the various studies 
that examine the benefits of dynamic and interactive mathematics environments, there still exists a 
need to explore the importance of having learners generate dynamic representations as opposed to 
having them generated for them (Goldman & Petrosino, 1999; Schwartz & Bransford, 1998). 

Design and Methods 
During the course of a two-year period, assessments were collected from two introductory level 

calculus classes consisting of high school seniors at a midsized, rural high school in Texas. As 
seniors, students in this course had taken an advanced algebra course and a precalculus course prior 
to entering the introductory level calculus course. At the beginning of the experiment, the teacher had 
about four years of teaching experience and had taught the course multiple times before. During the 
2013-2014 school year, the course content was taught to a class of 29 high school seniors in a 
traditional manner. The first semester of the course was designed to review algebra concepts while 
the second semester focused on connecting precalculus concepts to topics of differential calculus. 
Multiple representations were explored using pencil and paper. Graphing calculators (e.g., TI-84+) 
were used on occasion to verify relationships and check the reasonableness of solutions. The teacher 
often used graphical representations during instruction. Although graphical representations were an 
emphasis of the course, symbolic manipulation and interpretation were largely the primary foci, and 
the graphs that were explored were not dynamic. During the 2014-2015 school year, the same teacher 
taught course content to 25 high school seniors. Periodically throughout the second half of the year, 
the teacher guided students to create dynamic models that utilized sliders using Wolfram 
Mathematica, after which the teacher would formatively assess the students' understandings of the 
concept under investigation through the lens of the dynamic applet. All other instruction, 
assessments, and assignments were unchanged. 
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An Overview of the Tasks 
The students were first introduced to Mathematica as a replacement of the graphing calculator in 

order to gain familiarity with the software. By making use of Mathematica's freeform input, which 
essentially allows the user to input commands using English phrases and basic math notations, 
students could easily plot functions and note how Mathematica reformats the input into formal code. 
With this feature and varying amounts of support and guidance from the teacher and the Wolfram 
website, the students programmed an applet that accounted for the effect of one parameter of a 
sinusoidal function (e.g., amplitude). Then, the students were challenged to explore and manipulate 
the families of trigonometric functions by creating an applet in which all parameters of the functions 
could be changed (see figure 1). Upon completion, the teacher checked for understanding by asking 
questions about the effects of changing each parameter and by challenging the students to create 
sinusoidal functions that had certain attributes (e.g., a period of π, an amplitude of 4). 

 
Figure 1. Screenshot of student created exploration of tangent lines. 

Data, Analysis, and Results 
All assessments were collected from the two senior classes during the 2013-2014 (Group1) and 

2014-2015 (Group 2) school years. The formal assessment that occurred after the final use of 
Mathematica was chosen as the dependent measure to be compared in the quasi-experimental design. 
The assessment covered topics that aligned with the goals of the final applet-creation activity 
including the understanding of tangent lines and relative extrema. This assessment will be referred to 
as the post-test. The comprehensive semester exam (covering a review and extension of algebra 
topics) was chosen as a covariate to act as a control for the variability in math skills and experience 
between the two groups. The semester exam was graded on a traditional 100-point scale. The post 
test included an opportunity to score five bonus points for a maximum score of 105. As seen in table 
1, the means and ranges of the scores on the semester exam vary between the groups, and it appears 
that the means of the post-test scores vary considerably. The Attitudes Toward Mathematics 
Inventory (ATMI) was given to each group, at the same time each year, after the post-test was given 
(see Tapia & Marsh, 2004). The ATMI is a brief survey consisting of 40 questions that is designed to 
measure high school and college students’ attitudes toward mathematics. 
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Table 1: Descriptive Statistics 
  

Minimum 
 

Maximum 
 

Mean 
 

Std. Deviation 
 
Group 1 
N = 29 

 
Semester Exam 

 
49.00 

 
101.00 

 
75.93 

 
12.23 

Post Test 46.00 99.00 69.48 16.40 

 
Group 2 
N = 25 

 
Semester Exam 

 
41.00 

 
95.00 

 
70.08 

 
15.99 

Post Test 58.00 103.00 80.56 11.90 

Results 
A One-way ANCOVA revealed a statistically significant difference between the post-test scores 

of each group controlling for prior mathematical skill level and inconsistencies using the semester 
exam scores, F(1, 51) = 14.075, p < 0.001. It is important to note that the results were also significant 
when other prior assessments were used as a covariate. A partial eta-squared value of about 0.185 
indicates that approximately 18.5% of the variance in the post test scores is attributable to the 
independent group variable (i.e., group 1 as the control group, group 2 as the post-intervention 
group).  

A chi-square test of independence revealed a significant difference between the reported attitudes 
of group 1 and group 2, χ2(2, N = 50) = 680.835, p < .001. Students from group 2 reported a higher 
proportion of neutral and positive responses and reported fewer negative responses. Figure 3 shows 
the frequencies of responses for each group and level of response. The responses utilized a Likert 
scale from which the students chose the extent to which they agreed or disagreed with a statement 
involving mathematics. A response of rating one (1) corresponds to a choice that reflects the most 
negative attitude toward mathematics (e.g., Strongly Agree to the statement: "Mathematics makes me 
uncomfortable."; Strongly Disagree to the statement: "I think studying advanced mathematics is 
useful."). A response of rating three (3) corresponds to a selection of "neutral," and a response of 
rating five (5) corresponds to a choice that reflects the most positive attitude toward mathematics. 
Ratings of four (4) and two (2) correspond to intermediate responses, such as "Agree" or "Disagree." 

Discussion and Conclusion 
The significant difference in post test scores and reported attitudes suggests that the experience of 

creating and interacting with dynamic spaces did indeed aid the students in their quest to understand 
the nuances of calculus. This section will aim to explore some of the constructive aspects of this 
experience that may have implications for creating effective technological learning experiences in 
mathematics instruction. First and most obvious, the use of sliders allows for more time for 
productive discourse (Bu & Haciomeroglu, 2010). Once students learn how to operate the more 
advanced technology (i.e., Mathematica), students and teachers are enabled to spend more class time 
talking about the concept under investigation. As employed by the teacher in this study, discourse 
can evolve and move beyond addressing procedural features of a task (e.g., graphing multiple 
functions to identify a pattern) to attend to the qualities of the concept in a shorter amount of time 
while also granting more opportunities for feedback, revision, and reflection—a vital aspect of 
technology use in education (National Research Council [NRC], 2000). For example, during the task, 
questions (e.g., how can you use this model to find the where the lowest point on the function 
occurs?) used the dynamic aspect of the model to quickly make connections to concepts (e.g., 
relative extrema, concavity) while providing immediate feedback to each student. The efficiency of 
the dynamic models allows students and teachers to address broader conceptual qualities with less of 
an opportunity for students to lose interest or get distracted from the goal of the lesson.  
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The act of modeling and programming dynamic spaces can parallel the construction of 
underlying mathematics (Tall,1991). On the surface, the students are mirroring the common task of 
constructing tangent lines when they define a function and situate the correct values in position (e.g., 
:"(Ä) as the slope, :(Ä) as the l-intercept) (see figure 1). In this particular activity, several students 
initially programmed incorrectly by positioning functions (e.g., :" ! as the slope) rather than 
functions evaluated at a point (e.g., :" Ä where Ä represents a constant). This mistake was quickly 
realized when the student's output returned graphs that clearly did not represent a tangent line which, 
in turn, led to conversations between the students and the teacher about the difference between a 
variable and a variable that represents a constant—an example of an opportunity for revision and 
reflection. While other software (e.g., GeoGebra, Geometer's Sketchpad) can construct similar 
dynamic spaces, programming using Mathematica introduce a practical application of a function. 
Specifically, by using the "Plot" and "Manipulate" functions of Mathematica, students gain 
experience with functions of multiple arguments (see figure 2). At a deeper level, when students 
embed a function into another function (e.g., Manipulate [Plot[{f(x),…), they are reintroduced to the 
concept of function composition, a crucial topic in the understanding of the chain rule. 

 
Figure 2. Screenshot showing multiple arguments of the Manipulate function. 

The positive results are also consistent with NCTM Standards (2000) suggesting that the 
exploration of multiple representations is beneficial to the understanding of mathematical concepts. 
Since it is believed that "student difficulties in understanding calculus concepts result from an 
inadequate understanding of graphic and algebraic aspects of these concepts" (Haciomeroglu & 
Andreasen, 2013, p. 7), it is plausible that the experience with the dynamic graphical representations, 
the algebraic nature of coding Mathematica, and the use of a slider that acts as a medium between 
representations contributed to the easing of such difficulties and increased understanding evident in 
the results. For example, when using derivatives to determine relative extrema (i.e., a maximum or 
minimum value of a function) the analytic procedures employed align with a graphical interpretation. 
Specifically, to determine possible relative extrema, or critical points, of a single variable function : 
analytically, one may compute the derivative of the function :′ and solve for the values at which the 
derivative evaluates to zero (i.e., solve for E such that :′ E = 0). This process aligns with the graphical 
interpretation of finding the points along the function at which the line tangent to the point has a 
slope of zero (figure 3). 
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Figure 3. Relationship between graphical interpretation and analytic.  

The visualization of the graphical interpretation can act as a reference when selecting the 
appropriate analytic method to employ. In this case, by visualizing an example function, one can 
deduce that because the extrema occur where the tangent line has a slope of zero and the derivative 
of the function at a point can be interpreted as the slope of the tangent line, then the analytic process 
to find the extrema begins by setting the derivative equal to zero because that is the point where the 
slope is horizontal. When students fail to make this connection between the graphical and analytic 
procedures through visualization, many students haphazardly resort to analytic procedures without 
fully understanding what to use or why they are using them (Haciomeroglu & Andreasen, 2013). 

Multiple representations, multiple modalities, and technology can be helpful in the understanding 
of mathematical concepts when used in an appropriate manner (Shah & Freedman, 2003; Goldman, 
2003), but this alone does not account for the benefits of creating and using dynamic models over 
teacher generated graphs to construct connections between representations. One benefit of the 
dynamic feature of the models used is that they provide an external representation of tangent lines at 
various points on a function. Consequently, students do not have to maintain or mentally transform a 
mental representation of the model which may reduce the cognitive load required to comprehend the 
new concept being presented (Shah & Freedman, 2003). As Tall (1991) suggests,  

A computer can also give much-needed meaning to mathematical concepts that students may feel 
are not of the physical world but in the mind, or in some ideal world. It is generally agreed that 
ideas are easier to understand when they are made more “concrete” and less “abstract”. When an 
abstract idea is implemented or represented in a computer, then it is concrete in the mind, at least 
in the sense that it exists (electro-magnetically, if not physically). Not only can the computer 
construct be used to perform processes represented by the abstract idea, but it can itself be 
manipulated, things can be done to it. (Tall, 1991, p. 235) 

Tall's (1991) explanation may help shed light on how the dynamic model involving tangent lines 
aids in a concrete understanding of the abstract idea that a derivative of a function is, in many cases, 
a function itself. That is, the derivative of a function is more than just a slope at a single point, but 

 

Graphical Process

 

Analytical Process 
 
Given  
!(") = 1/2 "2 + 1/4 "4 − 6", 
Compute !′("), 
!′(") = "4 + " − 6 
= (" − 2)(" + 3) 
Let !′(") = 0, solve for ", 
"4 + " − 6 = 0 
(" − 2)(" + 3) = 0 
" = 2,−3 
 
Conclude that ! may have relative 

extrema at 
" = 2 and/or " = −3. 
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rather a sort of formula that contains enough information for the practicing mathematician to find a 
slope, or rate of change, at any point along a curve (granted the derivative is defined at each point on 
the curve). Also, Tall (1991) posits that it is often true that "whenever a person constructs something 
on a computer, a corresponding construction is made in the person’s mind" (p. 235). Although this is 
a very bold remark, it is suggestive of constructivist learning theory in the sense that what is being 
learned is inextricably tied to how it is learned. Thus, by using animated (i.e., dynamic) visuals to 
decrease the cognitive load of the learner at the time of conceptualization (Shah & Freedman, 2003), 
students are enabled to make connections between graphical and analytic procedures through 
previously unrealized dynamic visualization and avoid haphazardly resorting to analytic procedures 
without a deep understanding of the reasoning behind them. 

Finally, Shah and Freedman (2003) suggest that students' attention is drawn to electronic visual 
displays, that students are more apt to study electronically delivered content for longer periods of 
time, and that visualizations in electronic learning environments can be attractive and motivating. 
These ideas help to explain the increase in positive responses on the mathematical attitude survey. 

The implications of this research align with the current trend and push to integrate technology in 
the mathematics classroom. Although it may be detrimental to assume that the use of technology 
automatically implies learning, it is evident that effective use of technology in the classroom by both 
teachers and students can have substantially beneficial impacts. The affordances involved with the 
effective use of technology should be identified, and this technology should continue enhancing 
learning opportunities in mathematics classrooms by taking "advantage of what technology can do 
efficiently and well - graphing, visualizing, and computing" (NCTM, 2000, p. 26). 

Limitations 
This study highlights the beneficial aspects of incorporating technology into the calculus 

classroom but has many limitations and leads to more questions about maximizing learning through 
the use of student-created explorative spaces. The study was primarily limited by the small sample 
sizes involved. The sample sizes could be expanded to include a more diverse population by 
including other schools and classes. This could also help eliminate the possibility that the positive 
results were due to teacher engagement or an excitement about using "new" technology, rather than 
the actual exploration of concepts and representations. 

Opportunities for Future Research 
Although the large effect size implies that the applet-creation and exploration was substantially 

valuable, from this study alone, it is unclear to what extent each aspect of the creative and 
investigative processes was beneficial to student learning. For this reason, among others, this study 
raises many more questions to be explored. Would the results have been different if the dynamic 
models were to be created and supplied by the teacher rather than created by the students? Would the 
results differ if another program were to be used? To distinguish between the benefits of 
investigating student-created dynamic spaces versus teacher supplied dynamic spaces, multiple 
groups could be included in a study. Particularly, the control group could be taught traditionally, a 
second group could explore concepts using teacher supplied dynamic spaces, while a third group 
could explore concepts using student-created dynamic spaces. This design need not be limited to 
concepts of calculus. Rather, it could be expanded to explore other statistical models and spaces used 
for real-world problem solving tasks. A similar three-group design could be used to distinguish 
between benefits of one program over another, given a particular topic, which might aid in 
determining if there is a strong benefit to the programming language employed by Mathematica over 
a more elementary software program. Although current popular programs used to explore 
mathematical concepts and create dynamic spaces (e.g., Desmos, GeoGebra, Geometer’s Sketchpad, 
Mathematica, Matlab) share some overlapping features of their functionality (e.g., the ability to 
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create sliders) and user interfaces (e.g., programming language, inputting geometric figures by 
clicking and dragging), certain programs may be more appropriate for certain levels of development 
and age groups and may also vary among particular concepts and explorations. As Tall (1991) posits, 
it is important to note “the principal aim of the programming system of Mathematica is 
predominantly for doing mathematics, rather than learning mathematics” (p. 242). Since the 
technology that is used as an instructional tool develops over time due to updates in software, it could 
prove beneficial to identify the affordances of common features that aid in the development of 
mathematical skills in order to maximize the advantages of using technological tools in education. 
The future of technology in the classroom is promising; there are many questions left to explore. 
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